W-boson production in spin-dependent global analysis

Pavel Nadolsky & Randall Scalise Southern Methodist University

- m arphi Usefulness of lepton-level asymmetries $A_L(y_\ell)$ in W boson production
- ✓ Implementation of NLO $A_L(y_\ell)$ in the global fits

Next-to-leading order (NLO) corrections in the analysis of parton distributions

- ✔ Required to make accurate predictions
- ✓ Would drastically slow calculations if straightforwardly implemented in the fit

Common solution: calculate the NLO cross section as

$$\sigma_{NLO} = K\sigma_{LO},$$

where

- $lap{\prime}$ the LO cross section σ_{LO} is updated in each call of the minimization subroutine
- \checkmark the more complicated factor $K \equiv \sigma_{NLO}/\sigma_{LO}$ is updated every n calls (where n is a large number, e.g., $n \sim 10^3$)

K-factors in the spin-dependent fit

In the polarized case, the convergence of such procedure is questioned due to

- ightharpoonup flexibility and indefinite sign of spin-dependent distributions $\Delta f(x,Q)$
- $m \emph{v}$ possible presence of radiation zeros ($\sigma_{LO}=0$) in spin-dependent cross sections

An alternative method involves a complete calculation of σ_{NLO} in each call of minimization using Mellin transform (M. Stratmann, W. Vogelsang, Phys. Rev. D64, 114007)

 $\Delta pp \to (W^{\pm} \to l\nu)X$:

asymmetry $A_L(y_\ell)$ with respect to the rapidity y_ℓ of the decay charged lepton (P. N., C.-P. Yuan, NPB666, 3 (2003); ibid., B666, 35 (2003))

$$A_L(y_\ell) \equiv rac{rac{d\sigma^{p
ightarrow p}}{dy_\ell} - rac{d\sigma^{p
ightarrow p}}{dy_\ell}}{rac{d\sigma^{p
ightarrow p}}{dy_\ell} + rac{d\sigma^{p
ightarrow p}}{dy_\ell}}$$

A better alternative to the commonly discussed single-spin asymmetry $A_L(y)$ with respect to the rapidity y of the W boson

- ✓ Directly measurable
- $ightharpoonup Not distorted by limited acceptance of RHIC detectors (while <math>A_L(y)$ is strongly distorted)
- ✓ Sensitive to different polarized parton distributions
- \checkmark A fully differential $\mathcal{O}(\alpha_S)$ calculation with inclusion of W-boson decay and transverse momentum resummation exists in the form of a Monte-Carlo code

(available at http://hep.pa.msu.edu/~nadolsky/RhicBos)

$A_L(y_\ell)$ for different choices of $\min p_{T\ell}$

The direct experimental observable is $A_L(y_\ell)$ with $p_{T\ell} \geq p_{T\ell}^{\sf min}$

Unpolarized W-boson charge asymmetry at the Tevatron

$$A_{charge}(y_\ell) \equiv rac{rac{d\sigma^{W^+}}{dy_\ell} - rac{d\sigma^{W^-}}{dy_\ell}}{rac{d\sigma^{W^+}}{dy_\ell} + rac{d\sigma^{W^-}}{dy_\ell}}$$

 \checkmark analog of $A_L(y_\ell)$ in the unpolarized case; related to

$$A_{charge}(y) = \frac{u(x_a)d(x_b) - d(x_a)u(x_b)}{u(x_a)d(x_b) + d(x_a)u(x_b)}$$

- \checkmark constrains $d(x,M_W)/u(x,M_W)$ in CTEQ and MRST analyses
- ✓ published data is implemented in the global fit with the selection cut $p_{T\ell} \geq p_{T\ell}^{\min} =$ 25 GeV

 $d\sigma/dy_\ell$ at the Born level

$$\left(\frac{d\sigma(p\bar{p}\to W^+X)}{dy_\ell}\right)_{LO} = \frac{2\pi\sigma_0}{S} \int_{y_{\min}(p_{T\ell}^{\min})}^{y_{\max}(p_{T\ell}^{\min})} dy \sin^2\theta \\ \times \left\{u(x_a)d(x_b)(1+\cos\theta)^2 + d(x_a)u(x_b)(1-\cos\theta)^2\right\},$$
 with $x_{a,b} = \frac{Q}{\sqrt{S}}e^{\pm y}$, $\cos\theta = \tanh(y_\ell - y)$

- ✓ Simple kinematics due to $p_{TW} = 0$
- ✓ Only 2 structure functions $\propto (1 \pm \cos \theta)^2$ in the W^+ rest frame
- u $p_{T\ell}^{\sf min}$ appears only in the limits of the integration $y_{\sf min}$, $y_{\sf max}$

Similarly,
$$\left(\frac{d\Delta\sigma(pp\to W^+X)}{dy_\ell} \right)_{LO} = \frac{2\pi\sigma_0}{S} \int_{y_{\min}(p_{T\ell}^{\min})}^{y_{\max}(p_{T\ell}^{\min})} dy \sin^2\theta$$
 for $d\Delta\sigma/dy_\ell$:
$$\times \left\{ -\Delta u(x_a)\bar{d}(x_b)(1+\cos\theta)^2 + \Delta\bar{d}(x_a)u(x_b)(1-\cos\theta)^2 \right\}$$

NLO calculation of $d\sigma/dy_{\ell}$ is more complex

- ✓ 5 structure functions due to lepton-parton spin correlations
- \checkmark complicated kinematics due to $p_{TW} \neq 0$
- ✓ integration of $p_T, y, Q^2, p_{T\ell}$ over experimental phase space (best done with Monte-Carlo integration)
- $ightharpoonup resummation of transverse momentum logarithms needed for <math>p_T$ distributions
- \checkmark is implemented in CTEQ analysis using an effective K-factor

K-factor for $d\sigma/dy_{\ell}$ (PRELIMINARY) (Barger & Phillips, Collider Physics, ch. 7.11)

$$rac{rac{d(\Delta)\sigma_{NLO}}{dy_\ell}}{rac{d(\Delta)\sigma_{LO}}{dy_\ell}} pprox \left(rac{1+3lpha_S(Q)}{K_0} + ext{extra terms}
ight)$$

 K_0 is independent of the PDF and spin $(K_0 \approx 1.36 \text{ at } Q = M_W)$

The extra terms depend on the PDF and spin; they are small in the unpolarized case

K-factors for $d\Delta\sigma/dy_\ell$ (PRELIMINARY)

Spin-dependent K-factors diverge near the LO radiation zeros

Radiation zero:
$$\left(\frac{d\Delta\sigma}{dy_\ell}\right)_{\text{LO}} = 0$$

Is that a problem?

Radiation zeros...

- \checkmark ...are easily identifiable in the data $(|A_L(y_\ell)| \lesssim 0.1)$
- ...are smeared by experimental resolution and statistical errors
- $lap{\prime}$...can be removed from the data by $p_{T\ell}$ cuts
- ✓ ...can be excluded from the fit by data selection cuts
- ✓ ...can be included in the fit, with the direct NLO calculation used only in the vicinity of the radiation zero
- $lap{p}$ no radiation zero for the cut $p_{T\ell} > 20~{
 m GeV}$

Summary

- 1. The lepton single-spin asymmetry $A_L(y_\ell)$ provides a theoretically clean and direct observable in polarized W-boson production
- 2. Resummed $A_L(y_\ell)$ (with $p_{T\ell}$ cuts) can be easily implemented in the global fits using an effective K factor $K = \sigma_{NLO}/\sigma_{LO}$ and a simple procedure for handling radiation zeros
- 3. The K-factors (calculated in the p_T resummation formalism) for Gehrmann-Stirling, GRSV, and de Florian-Sassot PDF sets can be generated using RhicBos (input Xsection grids available by request)

Double Mellin transform

$$\sigma = rac{1}{(2\pi i)^2} \int_{C_n} dn \int_{C_m} dm \Delta f_n \Delta f_m \widetilde{\sigma}(m,n),$$

where

$$\Delta f_m \equiv \int_0^1 dx \, x^{n-1} \Delta f(x)$$

is the *n*-th moment of $\Delta f(x)$,

$$\widetilde{\sigma}(m,n) = \int d\{P.S.\} \int_0^1 dx_a \int_0^1 dx_b \, x_a^{-n} x_b^{-m} \frac{d\widehat{\sigma}(x_a, x_b)}{d\{P.S.\}}$$

is the convolution of the cross section $\sigma(x_a,x_b)$ (integrated over phase space P.S.) with the "eigenvector PDFs" x_a^{-m} , x_b^{-n}

 $\sigma(m,n)$ can be calculated at the full NLO before the fitting

It is not obvious that $\int d\{P.S.\}$ can be evaluated using Monte-Carlo methods for complex m and n

Impact of leptonic cuts on the measurement of $A_L(y)$

Due to the spin-1 of W^{\pm} boson, cuts affect the numerator and denominator of $A_L(y)$ differently

Interest in fully differential cross sections at the lepton level

- ✔ Partial angular coverage of Phenix and Star detectors
 - \diamond E_T and momentum of W^\pm cannot be reconstructed
 - \diamond y can be approximately reconstructed in a limited event sample and only if dynamics is well understood

 \Diamond

$$A_L(y)|_{with} \neq A_L(y)|_{without}$$
 $lepton$
 $cuts$
 $cuts$

Due to the spin-1 of W^{\pm} boson, cuts affect the numerator and denominator of $A_L(y)$ differently

Impact of leptonic cuts on the measurement of $A_L(y)$

Due to the spin-1 of W^{\pm} boson, cuts affect the numerator and denominator of $A_L(y)$ differently

Transverse momentum distributions

 $p_{TW} \neq$ 0! The shape of $d\sigma/dp_{TW}$ at $p_{TW} \rightarrow$ 0 cannot be described at a finite order of PQCD: calculation of the sum

$$\frac{1}{p_{TW}^2}\sum_{n=1}^{\infty}\left(\frac{\alpha_S}{\pi}\right)^n\sum_{m=0}^{2n-1}v_{mn}\left(\ln^m\frac{Q^2}{p_{TW}^2}\quad\text{or}\quad\delta(\vec{p}_{TW})\right)$$

is needed

Similar multiple parton radiation effects in lepton p_T distributions